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Abstract In this paper, we obtain the lower and upper bounds on the Harary index of
a connected graph (molecular graph), and, in particular, of a triangle- and quadrangle-
free graphs in terms of the number of vertices, the number of edges and the diameter.
We give the Nordhaus–Gaddum-type result for Harary index using the diameters of
the graph and its complement. Moreover, we compare Harary index and reciprocal
complementary Wiener number for graphs.

Keywords Harary index · Triangle-free graphs · Quadrangle-free graphs · Diameter ·
Lower bound · Upper bound

1 Introduction

The Harary index of a molecular graph G, denoted by H(G), has been introduced in
1993 in this Journal independently by Plavšić et al. [1] and by Ivanciuc et al. [2] for
characterization of G. The Harary index is defined as the half-sum of the elements
in the reciprocal distance matrix, also called the Harary matrix [3]. This definition
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parallels the Hosoya definition of the Wiener index as the half-sum of the elements
in the distance matrix [4]. The motivation for introduction of the Harary index was to
design a distance index differing from the Wiener index [5] in that the contributions to
it from the distant atoms in a molecule should be much smaller than from near atoms,
since in many instances the distant atoms influence each other much less than near
atoms. Harary index has been extended to heterosystems [6] and the hyper-Harary
index was introduced [7]. The Harary index and related molecular descriptors have
shown a modest success in structure–property correlations [8–12], but their use in com-
bination with other molecular descriptors improves the correlations (e.g., [13]). The
Harary index has a number of interesting properties (e.g., [6]). The lower and upper
bounds of the Harary index in terms of the number of vertices and/or the number of
edges, and the Nordhaus–Gaddum-type result for Harary index were obtained in [14].
The lower and upper bounds and the Nordhaus–Gaddum-type result for the recipro-
cal complementary Wiener number of a connected (molecular) graph were obtained
in [15].

We consider simple (molecular) graphs, that is, graphs without multiple edges and
loops [16]. Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} and
let m be the cardinality of the edge set E(G). For vi ∈ V (G), �(vi ) denotes the set
of its (first) neighbors in G and the degree of vi is δi = |�(vi )|. Let |X | denote the
cardinality of the set X . The diameter of a graph is the maximum distance between
any two vertices of G. Let d be the diameter of G. The term

∑n
i=1 δ2

i is known as the
first Zagreb index of G, denoted by M1(G) [17–22].

The distance matrix D of G is an n ×n matrix (di j ) such that di j is just the distance
(i.e., the number of edges of a shortest path) between the vertices vi and v j in G [3],
denoted by δ(i, j |G). The reciprocal distance matrix RD of G is an n × n matrix
(RDi j ) such that [3]

RDi j =
{

1
di j

if i �= j,

0 otherwise.

Recall the Harary index H(G) is defined in [1,2]

H(G) = 1

2

n∑

i=1

n∑

j=1

RDi j =
∑

i< j

RDi j .

The complementary distance matrix C D of G is an n × n matrix (C Di j ) such that
C Di j = 1+d −di j if i �= j , and 0 otherwise [3], where d is the diameter of the graph
G. The reciprocal complementary distance matrix RC D of G is an n ×n matrix (rci j )
such that

rci j =
{

1
ci j

if i �= j,

0 otherwise.

Recall the reciprocal complementary Wiener (RCW) number of the graph G is
defined as [12]
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RCW (G) = 1

2

n∑

i=1

n∑

j=1

rci j =
∑

i< j

rci j .

Now we study the Harary index in more detail, especially its relationship with
the diameter. The paper is organized is as follows. In Sect. 2, we present the lower
and upper bounds on the Harary index of connected graph, and, in particular, lower
and upper bounds of triangle- and quadrangle-free graphs in terms of the num-
ber of vertices, the number of edges and the diameter. In Sect. 3, we obtain the
Nordhaus–Gaddum-type result for Harary index using the diameters of the graph
and its complement. In Sect. 4, we make a comparison between Harary index and
reciprocal complementary Wiener number for graphs.

2 Harary index of graphs

In [14] the following lower and upper bounds for H(G) was established:

Lemma 2.1 [14] Let G be a connected graph with n ≥ 2 vertices, and m edges. Then

H(Pn) + m − n + 1

2
≤ H(G) ≤ n(n − 1)

4
+ m

2
, (1)

with left (right, respectively) equality if and only if G = Pn or K3 (G has diameter at
most 2, respectively).

From definition of Harary index, we get

H(Pn) =
n−1∑

k=1

n − k

k
= 1 + n

n−1∑

k=2

1

k
.

Now we give the following Lemma 2.2 which is useful for this section and also for
next section.

Lemma 2.2 Let Pn be a path of n vertices. Then

H(Pn) ≤ (n − 1)(n + 2)

4
.

Moreover, equality holds if and only if either n = 2 or n = 3.

Proof We have

H(Pn+1) = H(Pn) + 1 + 1

2
+ 1

3
+ · · · + 1

n − 1
+ 1

n

≤ H(Pn) + 1 + 1

2
+ 1

2
+ · · · + 1

2
+ 1

2

≤ H(Pn) + 1 + n − 1

2
,
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that is,

H(Pn+1) − n(n + 3)

4
≤ H(Pn) − (n − 1)(n + 2)

4
.

Now we have H(P2) = 1, H(P3) = 2.5 and H(P4) = 13
4 < 4.5. Hence, by

mathematical induction we can easily show that

H(Pn) ≤ (n − 1)(n + 2)

4
,

with equality holds if and only if n = 2 or n = 3. ��

For graph G of diameter 2,

H(G) = n(n − 1) + 2m

4
.

Denoted by G∗ = (V, E), a graph of diameter d (3 ≤ d ≤ 4 and |V (G∗)| ≥ d +2)
such that any vertex vi , vi ∈ V (G∗)\V (Pd+1), δ(i, j |G∗) = 1 or δ(i, j |G∗) = 2 for
any vertex v j ∈ V (G∗), j �= i , where Pd+1 is a path of d + 1 vertices in G∗. The two
graphs depicted in Fig. 1 are of G∗ type graph.

We have

H(G∗) = n(n − 1) + 2m

4
− 1

6
for d = 3

and H(G∗) = n(n − 1) + 2m

4
− 7

12
for d = 4.

Now we give lower and upper bounds for the Harary index in terms of the number
of vertices n, the number of edges m and the diameter d of G.

Fig. 1
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Theorem 2.3 Let G be a connected graph with n ≥ 2 vertices, m edges, and diameter
d. Then

H(Pd+1) + n(n − 1) + 2(m − d)(d − 1)

2d
− d + 1

2
≤ H(G)

≤ H(Pd+1) + n(n − 1) + 2m

4
− d(d + 3)

4
, (2)

with left (right, respectively) equality holds if and only if G is a graph of diameter at
most 2 or G is a path Pn (G is a graph of diameter at most 2 or G is a path Pn or G
is isomorphic to G∗, respectively).

Proof Since G has diameter d, G contains a path Pd+1. Also we have that there are(n
2

)
vertex pairs (at distance at least one) and the number of vertex pairs at distance

one is m. Thus we have

H(Pd+1) + m − d +
(n(n − 1)

2
− d(d + 1)

2
− (m − d)

) 1

d
≤ H(G)

≤ H(Pd+1) + m − d +
(n(n − 1)

2
− d(d + 1)

2
− (m − d)

)1

2
(3)

i.e., H(Pd+1) + n(n − 1) + 2(m − d)(d − 1)

2d
− d + 1

2
≤ H(G)

≤ H(Pd+1) + n(n − 1) + 2m

4
− d(d + 3)

4
.

Now suppose that left equality holds in (2). Then the left equality holds in (3).
If d ≤ 2, then the left equality holds in (3) and hence G is a graph of diameter
at most 2. Otherwise, d ≥ 3. In this case left equality holds in (3) if and only if
n(n−1)

2 − d(d+1)
2 − (m − d) = 0,

that is,
n(n − 1)

2
− d(d + 1)

2
= m − d = |E(G)\E(Pd+1)|. (4)

We have that m ≥ d. If m = d, then d = n − 1 as G is connected. Thus the Eq. (4)
holds, and hence G is a path Pn . Otherwise, m > d and so there are any vertex vi such
that vi ∈ V (G)\V (Pd+1), are adjacent to all the remaining vertices and diameter of
G is at most 2, a contradiction.

Next we suppose that the right equality holds in (2). Then the right equality holds
in (3). If d ≤ 2, then the right equality holds in (3) and hence G is a graph of diameter
at most 2. Otherwise, d ≥ 3. Now we have n ≥ d + 1. If n = d + 1, then G is a path
Pn . Otherwise, n ≥ d + 2. From right equality in (3), we conclude that any vertex
vi , vi ∈ V (G)\V (Pd+1), δ(i, j |G) = 1 or δ(i, j |G) = 2 for any vertex v j ∈ V (G),
j �= i , where Pd+1 is a path of d + 1 vertices in G. So, diameter of G is less than or
equal to 4. Hence G is isomorphic to a graph G∗.
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Conversely, one can see easily that the left (right, respectively) equality holds in
(2) for a graph of diameter at most 2 or a path Pn (a graph of diameter at most 2 or a
path Pn or a graph isomorphic to G∗, respectively). ��
Remark 2.4 If G has diameter at most 2, then our lower bound in (2) is always better
than the lower bound in (1). Now,

H(Pn) = H(Pd+1)

+
( 1

d + 1
+ 1

d + 2
+ · · · + 1

n − 1

)
+

( 1

d
+ 1

d + 1
+ · · · + 1

n − 2

)

+
( 1

d − 1
+ 1

d
+ · · · + 1

n − 3

)
+ · · · +

(
1 + 1

2
+ · · · + 1

n − d − 1

)

= H(Pd+1) + 1 + 1 + · · · + 1︸ ︷︷ ︸
d+1

+
(d + 1

d + 2
+ d + 1

d + 3
+ · · · + d + 1

n − d − 1

)

+
( d

n − d
+ d − 1

n − d + 1
+ · · · + 1

n − 1

)

< H(Pd+1) + d + 1 + (d + 1)(n − 2d − 2)

d
+ d(d + 1)

2d
.

Now we will see that the lower bound in (2) is better than the lower bound in (1)
for 2 < d ≤ n−2

2 . For this we have to show that

H(Pd+1) + d + 1 + (d + 1)(n − 2d − 2)

d
+ d(d + 1)

2d

+m − n + 1

2
≤ H(Pd+1) + n(n − 1)

2d

+m(d − 1)

d
− 3

2
d + 1

2

which is equivalent to

n(n − d − 3) + (d − 2)(m − 2d + 1) + 2 ≥ 0,

which is true for 2 < d ≤ n−2
2 .

Remark 2.5 By Lemma 2.2, the upper bound in (2) is always better than the upper
bound in (1).

Remark 2.6 The lower and upper bounds given by (2) are equal when G is a graph of
diameter at most 2 or G is a path Pn .

Denoted by G∗∗ = (V, E), a triangle- and quadrangle-free graph of diameter 4
with |V (G∗∗)| ≥ 6 such that any vertex vi , vi ∈ V (G∗∗)\V (Pd+1), δ(i, j |G∗∗) = 1
or δ(i, j |G∗∗) = 2 or δ(i, j |G∗∗) = 3 for any vertex v j ∈ V (G∗∗), j �= i , where
Pd+1 is a path of d + 1 vertices. The two graphs depicted in Fig. 2 are of G∗∗ type
graph.
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Fig. 2

We have

H(G∗∗) = 1

6
n(n − 1) + 1

12
M1(G

∗∗) + 1

2
m − 1

12
.

Now we give lower and upper bounds for the Harary index of triangle- and quad-
rangle- free connected graphs.

Theorem 2.7 Let G be a triangle- and quadrangle-free connected graph with n ≥ 2
vertices, m edges and diameter d. Then

H(G) ≥ H(Pd+1) + d − 2

4d
M1(G) − 2(d − 1) + n(n − 1) − 2

2d
+ m

2
(5)

and H(G) ≤ H(Pd+1) + 1

12
M1(G) + n(n − 1)

6
+ m

2
− d2

6
− d + 1

6
. (6)

Moreover, the equality holds in (5) if and only if G is a graph of diameter at most 3
or G is a path Pn, and the equality holds in (6) if and only if G is a graph of diameter
at most 3 or G is a path Pn or G is isomorphic to a graph G∗∗.

Proof Since G has diameter d, path Pd+1 contains in G. Also we have that there are(n
2

)
vertex pairs (at distance at least one), the number of vertex pairs at distance one is

m and the number of vertex pairs at distance two is 1
2 M1(G) − m. Thus we have

H(G) ≥ H(Pd+1) + m − d +
(1

2
M1(G) − m − d + 1

)1

2

+
(n(n − 1)

2
− d(d + 1)

2
− (m − d) − 1

2
M1(G) + m + d − 1

) 1

d
(7)

and

H(G) ≤ H(Pd+1) + m − d +
(1

2
M1(G) − m − d + 1

)1

2

+
(n(n − 1)

2
− d(d + 1)

2
− (m − d) − 1

2
M1(G) + m + d − 1

)1

3
(8)

i.e., H(G) ≥ H(Pd+1) + d − 2

4d
M2(G) − 2(d − 1) + n(n − 1) − 2

2d
+ m

2

and H(G) ≤ H(Pd+1) + 1

12
M1(G) + n(n − 1)

6
+ m

2
− d2

6
− d + 1

6
.
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Now suppose that equality holds in (5). Then the equality holds in (7). If d ≤ 3,
then the equality holds in (7) and G is a graph of diameter at most 3. Otherwise, d ≥ 4.
So we must have

n(n − 1)

2
− d(d + 1)

2
− 1

2
M1(G) + 2d − 1 = 0

Now we have n ≥ d + 1. If n = d + 1, then G is a path Pn . Otherwise,
n ≥ d + 2. Since G is connected, from equality in (7), we have that any vertex
vi , vi ∈ V (G)\V (Pd+1), δ(i, j |G) = 1 or δ(i, j |G) = 2 for any vertex v j ∈ V (G),
j �= i , where Pd+1 is a path of d+1 vertices in G. Using this we conclude that there are
no graph of diameter greater than or equal to 4, as G is triangle- and quadrangle-free.
Thus diameter of G is less than or equal to 3, a contradiction.

Next suppose that equality holds in (6). Then the equality holds in (8). If d ≤ 3,
then the equality holds in (8) and G is a graph of diameter at most 3. Otherwise,
d ≥ 4. Again we have n ≥ d + 1. If n = d + 1, then G is a path Pn . Otherwise,
n ≥ d +2. From equality in (8), we conclude that any vertex vi , vi ∈ V (G)\V (Pd+1),
δ(i, j |G) = 1 or δ(i, j |G) = 2 or δ(i, j |G) = 3 for any vertex v j ∈ V (G), j �= i ,
where Pd+1 is a path of d + 1 vertices in G. Using this we conclude that graph G has
diameter less than or equal to 4, as G is triangle- and quadrangle-free. Thus diameter
of G is equal to 4. Hence G is isomorphic to G∗∗.

Conversely, one can see easily that the equality holds in (5) for a graph of diameter
at most 3 or a path Pn and the equality holds in (6) for a graph of diameter at most 3
or a path Pn or a graph isomorphic to G∗∗. ��
Corollary 2.8 [14] Let G be a triangle- and quadrangle-free connected graph with
n ≥ 2 vertices and m edges. Then

H(G) ≤ 1

12
M1(G) + n(n − 1)

6
+ m

2

with equality holding if and only if G is a graph of diameter at most 3.

Proof We have

H(Pd+1) = d +
(1

2
+ 1

3
+ · · · + 1

d

)
+

(1

2
+ 1

3
+ · · · + 1

d − 1

)

+ · · · +
(1

2
+ 1

3

)
+ 1

2

= d + d − 1

2
+ d − 2

3
+ · · · + 2

d − 1
+ 1

d

≤ d + d − 1

2
+ (d − 1)(d − 2)

6

= d + d2

6
− 1

6
.

The result now follows from Theorem 2.7. ��
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Corollary 2.9 Let G be a triangle- and quadrangle-free connected graph with n ≥ 2
vertices, m edges and diameter d. Then

H(G) ≤ H(Pd+1) + 1

4
n(n − 1) + m

2
− d2

6
− d + 1

6
. (9)

Moreover, the equality holds in (9) if and only if G is a star K1,n−1 or G is a Moore
graph of diameter 2. There are at most four Moore graphs of diameter 2: pentagon,
Petersen graph, Hoffman-Singleton graph, and possibly a 57-regular graph with 3250
vertices [23].

Proof In [21], we have that M1(G) ≤ n(n − 1) with equality holding if and only if
G is the star K1,n−1 or G is a Moore graph of diameter 2. The result (9) follows from
Theorem 2.7. ��
Remark 2.10 The lower and upper bounds given by (5) and (6), respectively, are equal
when G is a graph of diameter at most 3 or G is a path Pn .

3 The Nordhaus–Gaddum-type result for the Harary index

Zhou et al. [14] obtained the Nordhaus–Gaddum-type result for the Harary index in
the following Lemma 3.1.

Lemma 3.1 Let G be a connected graph on n ≥ 5 vertices with a connected G. Then

1 + (n − 1)2

2
+ n

n−1∑

k=2

1

k
≤ H(G) + H(G) ≤ 3

4
n(n − 1) (10)

with left (right, respectively) equality holds in (10) if and only if G = Pn or G = Pn

(both G and G have diameter 2, respectively).

Now we give a lower bound for H(G) + H(G):

Theorem 3.2 Let G be a connected graph on n ≥ 2 vertices with a connected G.
Then

H(G) + H(G) ≥ H(Pk+1) + n(n − 1)

2

(
1 + 1

k

)
− 3k + 7

2
, (11)

where k = max{d, d}, d and d are diameter of G and G, respectively. Moreover, the
equality holds in (11) if and only if both G and G have diameter 2.

Proof By Theorem 2.3,

H(G) ≥ H(Pd+1) + m + m

d
− 3

2
d + 1

2
,
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Fig. 3

where m is the number of edges in G. Using above result, we get

H(G) + H(G) ≥ H(Pd+1) + H(Pd+1) + m + m + m

d
+ m

d

−3

2
(d + d) + 1 (12)

≥ H(Pd+1) + H(Pd+1) + (m + m)
(

1 + 1

k

)
− 3k + 1

as k = max{d, d} (13)

≥ H(Pk+1) + n(n − 1)

2

(
1 + 1

k

)
− 3k + 7

2
as k = max{d, d} and d, d ≥ 2 (14)

Now suppose that equality holds in (11). Then all inequalities in the above argument
must be equalities. Then from equality in (12), we get G is a graph of diameter 2 or G
is a path Pn , and G is a graph of diameter 2 or G is a path Pn . From equality in (13),
we get k = d = d . Also from equality in (14), we get either d = 2 or d = 2. Hence
both G and G have diameter 2.

Conversely, one can easily check that the equality holds in (11) for both G and G
of diameter 2. ��
Remark 3.3 For graph G1 (Fig. 3), the lower bound (11) for H(G) + H(G) is 31.5
better than 29.15, the lower bound given in (10). But for graph G2, the lower bound
(10) is 21.2 better than our lower bound 16.67, given in (11). So the lower bounds are
given in (10) and (11), are not comparable.

Now we give upper bound for H(G) + H(G) in terms of the number of vertices n
and the diameter d in G.

Theorem 3.4 Let G be a connected graph on n ≥ 2 vertices with a connected G. If
G has diameter d, then

H(G) + H(G) ≤ H(Pd+1) + 3n(n − 1)

4
− d(d + 3)

4
. (15)

Moreover, the equality holds if and only if both G and G have diameter 2 or G is a
path Pn.
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Proof Since G and G are connected, d ≥ 2 and d ≥ 2. By Theorem 2.3, we get

H(G) + H(G) ≤ H(Pd+1) + n(n − 1) + 2m

4
− d(d + 3)

4
+ H(Pd+1)

+n(n − 1) + 2m

4
− d(d + 3)

4
, (16)

where m is the number of edges in G and d is the diameter in G.
Using Lemma 2.2 in above result, we get

H(G) + H(G) ≤ H(Pd+1) + 3n(n − 1)

4
− d(d + 3)

4
,

as 2m = n(n − 1) − 2m. (17)

Now suppose that equality holds in (15). Then the equality holds in (16) and (17).
From equality in (16), we have G is a graph of diameter at most 2 or G is a path Pn

and G is a graph of diameter at most 2 or G is a path Pn .
From equality in (17), we must have

H(Pd+1) = d(d + 3)

4
.

By Lemma 2.2, d = 2 as d �= 1. Hence both G and G have diameter 2 or G is a
path Pn .

Conversely, one can see easily that the equality holds in (15) for both G and G have
diameter 2 or for G = Pn . ��

Remark 3.5 By Lemma 2.2, one can see easily that (15) is always better than the upper
bound given in (10).

Remark 3.6 The lower and upper bounds given by (11) and (15), respectively, are
equal when both G and G have diameter 2.

Theorem 3.7 Let G be a triangle- and quadrangle-free connected graph of n ≥ 2
vertices, m edges with a connected G. Then

H(G) + H(G) ≤ 1

6
M1(G) + 7n(n − 1)

12
+ n(n − 1)2

12
− m(n − 1)

3
. (18)

Moreover, the equality holds if and only if both G and G have diameter at most 3.

Proof By Corollary 2.8, we get

H(G) ≤ 1

12
M1(G) + n(n − 1)

6
+ m

2
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with equality holding if and only if G is a graph of diameter at most 3. Thus

H(G) + H(G) ≤ 1

12
M1(G) + 1

12
M1(G) + n(n − 1)

3
+ n(n − 1)

4

= 1

6
M1(G) + 7n(n − 1)

12
+ n(n − 1)2

12
− m(n − 1)

3
(19)

as M1(G) =
n∑

i=1

(n − 1 − δi )
2.

Hence the equality holds in (18) if and only if both G and G have diameter at most 3.
��

4 Comparison between Harary index and reciprocal complementary Wiener
number

In this section we compare between Harary index and reciprocal complementary
Wiener number. For star K1,n−1, we have H(K1,n−1) ≤ RCW (K1,n−1) and for
path Pn , we have H(Pn) ≥ RCW (Pn). Denote by DSn1,n2 (n1 ≥ n2), double star
which is constructed by joining the central vertices of two stars K1,n1 and K1,n2 .
We can see easily that H(DS1,1) > RCW (DS1,1), H(DS2,1) > RCW (DS2,1),
H(DS2,2) > RCW (DS2,2) and H(DSn1,1) > RCW (DSn1,1). But we have the fol-
lowing theorem:

Theorem 4.1 Let DSn1,n2 be a double star with n1 ≥ 3 and n2 ≥ 2. Then

H(DSn1,n2) ≤ RCW (DSn1,n2) (20)

with equality holding if and only if G is isomorphic to a graph DS3,2.

Proof We have

2H(DSn1,n2) =
(

n1 + 1 + n2

2

)
+

(
n2 + 1 + n1

2

)
+ n1

(
1 + 1

2
+ n2

3

)

+n1(n1 − 1)

2
+ n2

(
1 + 1

2
+ n1

3

)
+ n2(n2 − 1)

2

= 1

2
(n2

1 + n2
2) + 2

3
n1n2 + 5

2
(n1 + n2) + 2. (21)

and

2RCW (DSn1,n2) =
(n1

3
+ 1

3
+ n2

2

)
+

(n2

3
+ 1

3
+ n1

2

)
+ n1(n1 − 1)

2

+n1

(1

3
+ 1

2
+ n2

)
+ n2(n2 − 1)

2
+ n2

(1

3
+ 1

2
+ n1

)

= 1

2
(n2

1 + n2
2) + 2n1n2 + 7

6
(n1 + n2) + 2

3
. (22)
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Fig. 4

We have to prove that H(DSn1,n2) ≤ RCW (DSn1,n2), that is,

1

2
(n2

1 + n2
2) + 2

3
n1n2 + 5

2
(n1 + n2) + 2 ≤ 1

2
(n2

1 + n2
2)

+2n1n2 + 7

6
(n1 + n2) + 2

3
, by (21) and (22),

i.e., (n1 − 1)(n2 − 1) ≥ 2, which is true. (23)

Hence the first part of the proof is over.
Now, the equality holds in (23) if and only if n1 = 3 and n2 = 2 as n1 ≥ n2. One

can easily see that the equality holds in (20) if and only if G is isomorphic to a graph
DS3,2. Hence the theorem. ��

Now we construct a graph DS∗
n1,n2

from a graph DSn1,n2 by replacing each edge
of a path of length two. For example, DS∗

5,4 is a graph depicted in Fig. 4.

Theorem 4.2 Let DS∗
n1,n2

be a tree with n1 ≥ 8n2. Then

RCW (DS∗
n1,n2

) ≤ H(DS∗
n1,n2

). (24)

Proof We have

2H(DS∗
n1,n2

) =
(

n1 + n1

2
+ 1 + 1

2
+ n2

3
+ n2

4

)
+

(
2 + n1

2
+ n1

3
+ n2

2
+ n2

3

)

+
(

n2 + n2

2
+ 1 + 1

2
+ n1

3
+ n1

4

)
+ n1

(
2 + n1

2
+ n1

3
+ n2

4
+ n2

5

)

+ n1

(
1 + 1

2
+ n1

3
+ n1

4
+ n2

5
+ n2

6

)

+ n2

(
2 + n2

2
+ n2

3
+ n1

4
+ n1

5

)

+ n2

(
1 + 1

2
+ n2

3
+ n2

4
+ n1

5
+ n1

6

)

= 17

12
(n2

1 + n2
2) + 49

30
n1n2 + 77

12
(n1 + n2) + 5. (25)
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and

2RCW (DS∗
n1,n2

) =
(

n1

6
+ n1

5
+ 1

6
+ 1

5
+ n2

4
+ n2

3

)

+
(

2

6
+ n1

5
+ n1

4
+ n2

5
+ n2

4

)

+
(n2

6
+ n2

5

+ 1

6
+ 1

5
+ n1

4
+ n1

3

)

+ n1

(
2

6
+ n1

5
+ n1

4
+ n2

3
+ n2

2

)

+ n1

(
1

6
+ 1

5
+ n1

4
+ n1

3
+ n2

2
+ n2

)

+ n2

(
2

6
+ n2

5
+ n2

4

+ n1

3
+ n1

2

)
+ n2

(
1

6
+ 1

5
+ n2

4
+ n2

3
+ n1

2
+ n1

)

= 31

30
(n2

1 + n2
2) + 14

3
n1n2 + 63

30
(n1 + n2) + 16

15
. (26)

We have to prove that

H(DS∗
n1,n2

) ≥ RCW (DS∗
n1,n2

),

that is,

17

12
(n2

1 + n2
2) + 49

30
n1n2 + 77

12
(n1 + n2) + 5 ≥ 31

30
(n2

1 + n2
2) + 14

3
n1n2

+63

30
(n1 + n2) + 16

15

⇔ n2
1 + n2

2 − 182

23
n1n2 + 259

23
(n1 + n2) + 236

23
≥ 0

⇔ n2
1 + n2

2 − 8n1n2 + 11(n1 + n2) + 10 ≥ 0

⇔ n2
2 + 11(n1 + n2) + 10 ≥ 0, as n1 ≥ 8n2,

which, evidently, is always obeyed. Hence the theorem. ��

Remark 4.3 For n1 = n2 > 5, RCW (DS∗
n1,n2

) ≥ H(DS∗
n1,n2

). In order to see this
note that

n2
1 + n2

2 − 182

23
n1n2 + 259

23
(n1 + n2) + 236

23
≤ 0

⇔ −5n2
1 + 24n1 + 11 ≤ 0,

which is true for n1 > 5.

Remark 4.4 In Theorem 4.1, we have H(DSn1,n2) ≤ RCW (DSn1,n2) for n1 ≥ 3 and
n2 ≥ 2, but H(DS∗

n1,n2
) ≥ RCW (DS∗

n1,n2
) for n1 ≥ 8n2.
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Fig. 5

Now we find the characterization for which H(G)= RCW (G). We have that diam-
eter is one for complete graph Kn and H(Kn)= RCW (Kn). Now we begin the char-
acterization for graph of diameter 2.

Theorem 4.5 Let G be a graph of diameter 2. If H(G) = RCW (G), then either n
or n − 1 is divisible by 4.

Proof Since diameter of G is 2, either δ(i, j |G) = 1 or δ(i, j |G) = 2 for each pair
(vi , v j ). Since m is the number of edges in G, we have

H(G) = m + 1

2

(n(n − 1)

2
− m

)
and RCW (G) = 1

2
m +

(n(n − 1)

2
− m

)
.

m + 1

2

(n(n − 1)

2
− m

)
= 1

2
m +

(n(n − 1)

2
− m

)
,

i.e., m = n(n − 1)

4
.

Since m is an integer, either n or n − 1 must be divisible by 4. ��
Example 1 For the two graphs depicted in Fig. 5, H(G) = RCW (G) and n is divisible
by 4.

Theorem 4.6 Let G be a triangle- and quadrangle-free connected graph of diameter
3. If H(G) = RCW (G), then the first Zagreb index M1(G) is equal to the two times
of the number of edges in the complement of G.

Proof Since diameter of G is 3, either δ(i, j |G) = 1 or δ(i, j |G) = 2 or δ(i, j |G) = 3
for each pair (vi , v j ). Since m is the number of edges in G, the number of vertex pairs
at distance two is 1

2 M1(G) − m. Thus

H(G) = m + 1

2

(1

2
M1(G) − m

)
+ 1

3

(n(n − 1)

2
− 1

2
M1(G)

)

and RCW (G) =
(n(n − 1)

2
− 1

2
M1(G)

)
+ 1

2

(1

2
M1(G) − m

)
+ 1

3
m.
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So we have

m + 1

2

(1

2
M1(G) − m

)
+ 1

3

(n(n − 1)

2
− 1

2
M1(G)

)
=

(n(n − 1)

2
− 1

2
M1(G)

)

+1

2

(1

2
M1(G) − m

)
+ 1

3
m,

i.e., M1(G) = n(n − 1) − 2m = 2m, where m is the number of edges in G.

Hence the theorem. ��
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18. I. Gutman, B. Ruščić, N. Trinajstić, C.F. Wilcox, Jr., Graph theory and molecular orbitals. XII. Acyclic

polyenes. J. Chem. Phys. 62, 3399–3405 (1975)
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